Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua- μ_{4}-biphenyl-4,4'-dicarboxyl-ato-magnesium(II)]

Hsin-Kuan Liu, Xiang-Wen Peng and Chia-Her Lin*
Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: chiaher@cycu.edu.tw

Received 21 January 2009; accepted 22 January 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.106 ;$ data-to-parameter ratio $=16.4$.

The solvothermal reaction of magnesium nitrate with bi-phenyl-4, 4^{\prime}-dicarboxylic acid in N, N-dimethylformamide and water leads to the formation of crystals of the title complex, $\left[\mathrm{Mg}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$. In the crystal structure, the Mg cations are coordinated by six O atoms from two water molecules and four symmetry-related biphenyl-4, 4^{\prime} dicarboxylate anions within slightly distorted octahedra. The Mg cations are located on a center of inversion, the biphenyl4, 4^{\prime}-dicarboxylate anions around a twofold rotation axis and the water molecule in a general position. The Mg cations are linked by the anions into a three-dimensional framework.

Related literature

For related structures, see: Kitagawa et al. (2004).

Experimental

Crystal data
$\left[\mathrm{Mg}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=150.27$
Orthorhombic, Pbcn
$a=6.5913$ (10) \AA
$b=7.2900$ (9) A
$c=26.759$ (4) \AA

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.976, T_{\text {max }}=0.995$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 97$ parameters
$w R\left(F^{2}\right)=0.106$
$S=1.02$
1589 reflections
$V=1285.8$ (3) \AA^{3}
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$

5950 measured reflections 1589 independent reflections 1048 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This research was supported by the National Science Council, Taiwan (grant No. NSC97-2113-M-033-003-MY2), and Chung-Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH.

[^0]
References

Bruker (2007). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334 2375.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Poly[diaqua- μ_{4}-biphenyl-4,4'-dicarboxylato-magnesium(II)]

H.-K. Liu, X.-W. Peng and C.-H. Lin

Comment

The synthesis of coordination polymers, or so-called metal-organic frameworks (MOF), has been a subject of intense research owing to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence. A large number of these compounds have been synthesized by solvothermal reactions with organic carboxyl acids (Kitagawa et al., 2004). Here we report on the new metal organic framework bis(aqua)-biphenyl-4,4'-dicarboxylate magnesium (II). In the crystal structure the Mg cations are sorrounded by two O atoms from two symmetry related water molecules and four O atoms of four symmetry related anions (Fig. 1). The coordination polyhedron around the Mg cations can be described as a slightly distorted octahedron. The Mg cations are linked via the anions into a three-dimensional network (Fig. 2).

Experimental

The reaction was carried out under solvothermal conditions in a teflon-lined autoclav with an inner volume of 23 ml . A single-phase product consisting of transparent colorless crystals was obtained by heating a mixture of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $(0.1281 \mathrm{~g}, 0.5 \mathrm{mmol})$, biphenyl-4,4'-dicarboxylic acid $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}, 0.0290 \mathrm{~g}, 0.125 \mathrm{mmol}\right)$, N, N-dimethylformamide (10.0 $\mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$ at 423 K for 2 d followed by slow cooling at $6 \mathrm{~K} / \mathrm{h}$ to room temperature.

Refinement

The $\mathrm{C}-\mathrm{H}$ H atoms were positioned with idealized geometry and were refined isotropic using a riding model with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms at the water molecule were found in difference map and were refined with varying coordinates isotropic.

Figures

Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $-x+3 / 2, y-1 / 2, z$; (iii) $x+1 / 2,-y+3 / 2,-z$; (iv) $-x+2, y,-z+1 / 2$.].

Fig. 2. Crystal structure of the title compound with view along the a axis.

supplementary materials

Poly[diaqua- μ_{4}-biphenyl-4,4'-dicarboxylato-magnesium(II)]

Crystal data

$$
\left[\mathrm{Mg}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]
$$

$M_{r}=150.27$
Orthorhombic, Pbcn
$a=6.5913$ (10) \AA
$b=7.2900$ (9) \AA
$c=26.759$ (4) \AA
$V=1285.8(3) \AA^{3}$
$Z=8$
$F_{000}=624$
$D_{\mathrm{x}}=1.553 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 1007 reflections
$\theta=3.1-25.2^{\circ}$
$\mu=0.16 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Lamellar, colorless
$0.15 \times 0.10 \times 0.05 \mathrm{~mm}$
.

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=295(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.976, T_{\text {max }}=0.995$
5950 measured reflections

1589 independent reflections
1048 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=28.4^{\circ}$
$\theta_{\text {min }}=1.5^{\circ}$
$h=-7 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-22 \rightarrow 35$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0448 P)^{2}+0.3401 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.30$ e \AA^{-3}
$\Delta \rho_{\min }=-0.30$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\text {eq }}$
Mg 1	1.0000	0.5000	0.0000	$0.0159(2)$
C 1	$0.7888(3)$	$0.7850(2)$	$0.06884(7)$	$0.0162(4)$
C 2	$0.8503(3)$	$0.7715(3)$	$0.12262(7)$	$0.0184(4)$
C 3	$0.7124(3)$	$0.8132(3)$	$0.16000(7)$	$0.0245(5)$
H 3	0.5796	0.8440	0.1517	0.029^{*}
C4	$0.7715(4)$	$0.8092(3)$	$0.20963(7)$	$0.0259(5)$
H4	0.6775	0.8380	0.2343	0.031^{*}
C5	$0.9691(3)$	$0.7629(3)$	$0.22334(7)$	$0.0211(5)$
C6	$1.1051(3)$	$0.7183(3)$	$0.18550(7)$	$0.0261(5)$
H6	1.2372	0.6854	0.1938	0.031^{*}
C7	$1.0476(3)$	$0.7220(3)$	$0.13581(8)$	$0.0242(5)$
H7	1.1409	0.6915	0.1111	0.029^{*}
O1	$0.9201(2)$	$0.74253(17)$	$0.03552(5)$	$0.0194(3)$
O1W	$0.7228(2)$	$0.48848(18)$	$-0.03619(5)$	$0.0221(3)$
H1WA	0.6306	0.5799	-0.0412	0.080^{*}
H1WB	0.6335	0.4082	-0.0293	0.080^{*}
O2	$0.6164(2)$	$0.8454(2)$	$0.05857(5)$	$0.0233(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg 1	$0.0166(5)$	$0.0205(4)$	$0.0107(4)$	$0.0010(4)$	$0.0010(4)$	$-0.0006(4)$
C 1	$0.0195(11)$	$0.0161(9)$	$0.0129(9)$	$0.0000(8)$	$0.0000(8)$	$0.0002(7)$
C 2	$0.0214(12)$	$0.0218(10)$	$0.0121(9)$	$0.0017(8)$	$-0.0020(8)$	$0.0004(8)$
C 3	$0.0214(12)$	$0.0352(12)$	$0.0171(10)$	$0.0075(10)$	$-0.0001(9)$	$0.0004(9)$
C 4	$0.0271(13)$	$0.0388(11)$	$0.0116(9)$	$0.0057(10)$	$0.0022(9)$	$-0.0003(9)$
C 5	$0.0240(12)$	$0.0272(10)$	$0.0120(10)$	$0.0006(9)$	$-0.0017(9)$	$-0.0002(8)$
C 6	$0.0202(12)$	$0.0416(12)$	$0.0166(10)$	$0.0029(10)$	$-0.0037(9)$	$0.0012(9)$
C 7	$0.0216(12)$	$0.0369(12)$	$0.0141(10)$	$0.0042(10)$	$0.0010(8)$	$-0.0005(9)$
O1	$0.0221(8)$	$0.0232(7)$	$0.0129(7)$	$0.0025(6)$	$0.0012(6)$	$-0.0015(6)$
O1W	$0.0165(8)$	$0.0279(7)$	$0.0221(7)$	$0.0001(6)$	$-0.0011(6)$	$0.0012(6)$
O2	$0.0200(8)$	$0.0346(8)$	$0.0152(7)$	$0.0065(7)$	$-0.0015(7)$	$0.0041(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mg} 1-\mathrm{O}_{1} \mathrm{~W}^{\mathrm{i}}$	$2.0696(14)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{Mg} 1 — \mathrm{O} 1 \mathrm{~W}$	$2.0696(14)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.395(3)$

supplementary materials

Mg 1 - O 1	2.0753 (12)	C4-H4	0.9300
$\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	2.0753 (12)	C5-C6	1.391 (3)
$\mathrm{Mg} 1-\mathrm{O} 2^{\mathrm{ii}}$	2.0774 (13)	C5-C5 ${ }^{\text {iv }}$	1.484 (4)
$\mathrm{Mg} 1-\mathrm{O} 2^{\text {iii }}$	2.0774 (13)	C6-C7	1.383 (3)
C1-O2	1.249 (2)	C6-H6	0.9300
C1-O1	1.281 (2)	C7-H7	0.9300
C1-C2	1.498 (3)	O1W-H1WA	0.9119
C2-C3	1.385 (3)	O1W-H1WB	0.8502
C2-C7	1.395 (3)	$\mathrm{O} 2-\mathrm{Mg} 1^{\text {v }}$	2.0774 (13)
C3-C4	1.384 (3)		
O1W ${ }^{\text {i }} \mathrm{Mg} 1-\mathrm{O} 1 \mathrm{~W}$	180.00 (10)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.2 (2)
O1W ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 1$	88.58 (5)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mg} 1-\mathrm{O} 1$	91.42 (5)	C2-C3-H3	119.9
O1W ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	91.42 (5)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	121.3 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	88.58 (5)	C3-C4-H4	119.3
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 1^{\text {i }}$	180.00 (6)	C5-C4-H4	119.3
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2^{\mathrm{ii}}$	89.72 (5)	C6-C5-C4	117.84 (18)
O1W-Mg1-O2 $2^{\text {ii }}$	90.28 (5)	C6-C5-C5 ${ }^{\text {iv }}$	121.5 (2)
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2{ }^{\text {ii }}$	91.31 (5)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5{ }^{\text {iv }}$	120.6 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2^{\mathrm{ii}}$	88.69 (5)	C7-C6-C5	121.3 (2)
O1W ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 2^{\text {iii }}$	90.28 (5)	C7-C6-H6	119.4
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mg} 1-\mathrm{O} 2^{\text {iii }}$	89.72 (5)	C5-C6-H6	119.4
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2{ }^{\text {iii }}$	88.69 (5)	C6-C7- C 2	120.2 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mg} 1-\mathrm{O} 2{ }^{\text {iii }}$	91.31 (5)	C6-C7-H7	119.9
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Mg} 1-\mathrm{O} 2^{\mathrm{iii}}$	180.00 (8)	C2-C7-H7	119.9
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.14 (17)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mg} 1$	134.15 (12)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.73 (17)	Mg1-O1W-H1WA	128.9
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.03 (17)	Mg1-O1W-H1WB	122.5
C3-C2-C7	119.06 (18)	H1WA-O1W-H1WB	94.2
C3-C2-C1	120.10 (18)	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mg} 1^{\text {v }}$	133.89 (13)
C7-C2-C1	120.82 (18)		

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $-x+3 / 2, y-1 / 2, z$; (iii) $x+1 / 2,-y+3 / 2,-z$; (iv) $-x+2, y,-z+1 / 2$; (v) $x-1 / 2,-y+3 / 2,-z$.

Fig. 1

supplementary materials

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2132).

